skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fallen, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soybean (Glycine max[L.] Merr.) production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events. Water limiting stress, that is, drought, emerges as a significant risk for soybean production, underscoring the need for advancements in stress monitoring for crop breeding and production. This project combined multi‐modal information to identify the most effective and efficient automated methods to study drought response. We investigated a set of diverse soybean accessions using multiple sensors in a time series high‐throughput phenotyping manner to: (1) develop a pipeline for rapid classification of soybean drought stress symptoms, and (2) investigate methods for early detection of drought stress. We utilized high‐throughput time‐series phenotyping using unmanned aerial vehicles and sensors in conjunction with machine learning analytics, which offered a swift and efficient means of phenotyping. The visible bands were most effective in classifying the severity of canopy wilting stress after symptom emergence. Non‐visual bands in the near‐infrared region and short‐wave infrared region contribute to the differentiation of susceptible and tolerant soybean accessions prior to visual symptom development. We report pre‐visual detection of soybean wilting using a combination of different vegetation indices and spectral bands, especially in the red‐edge. These results can contribute to early stress detection methodologies and rapid classification of drought responses for breeding and production applications. 
    more » « less